Exercise 34

(a) The curve with equation $y^{2}=x^{3}+3 x^{2}$ is called the Tschirnhausen cubic. Find an equation of the tangent line to this curve at the point $(1,-2)$.
(b) At what points does this curve have horizontal tangents?
(c) Illustrate parts (a) and (b) by graphing the curve and the tangent lines on a common screen.

Solution

The aim is to evaluate y^{\prime} at $x=1$ and $y=-2$ in order to find the slope there. Differentiate both sides of the given equation with respect to x.

$$
\begin{aligned}
\frac{d}{d x}\left(y^{2}\right) & =\frac{d}{d x}\left(x^{3}+3 x^{2}\right) \\
(2 y) \cdot \frac{d}{d x}(y) & =\frac{d}{d x}\left(x^{3}\right)+3 \frac{d}{d x}\left(x^{2}\right) \\
(2 y) \cdot y^{\prime} & =\left(3 x^{2}\right)+3(2 x)
\end{aligned}
$$

Solve for y^{\prime}.

$$
y^{\prime}=\frac{3 x^{2}+6 x}{2 y}
$$

Evaluate y^{\prime} at $x=1$ and $y=-2$.

$$
y^{\prime}(1,-2)=\frac{3(1)^{2}+6(1)}{2(-2)}=-\frac{9}{4}
$$

Therefore, the equation of the tangent line to the curve represented by $y^{2}=x^{3}+3 x^{2}$ at $(1,-2)$ is

$$
y+2=-\frac{9}{4}(x-1)
$$

The curve has horizontal tangents where $y^{\prime}=0$, that is,
$y^{\prime}=\frac{3 x^{2}+6 x}{2 y}=\frac{3 x^{2}+6 x}{ \pm 2 \sqrt{x^{3}+3 x^{2}}}=\frac{3 x^{2}+6 x}{ \pm 2 x \sqrt{x+3}}=\frac{3 x+6}{ \pm 2 \sqrt{x+3}}=0 \quad \rightarrow \quad 3 x+6=0 \quad \rightarrow \quad x=-2$.
Plug this value of x into the curve's equation to get the corresponding value of y.

$$
x=-2: \quad y^{2}=(-2)^{3}+3(-2)^{2}=4 \quad \rightarrow \quad y=\{-2,2\}
$$

Therefore, the curve has horizontal tangents at $(-2,-2)$ and $(-2,2)$.

Below is a graph of the curve and the tangent line at $(1,-2)$ and the horizontal tangents.

